
Regular Expressions &
Finite State Machines

Main ideas
Regular expressions / grammars can be expressed with a finite state
machine (FSM)
• Also called finite automata (FA)
• Used to describe and recognize tokens
• Can be deterministic (DFA) or non-deterministic (NFA)

Two related challenges:
• Recognizing the longest substring corresponding to a token
• Separating a lexeme from the rest of the input string

Finite State Machines 2

Finite state machine (FSM)
Finite state machine (FSM), also called finite automata (FA), is a state
machine that takes a string of symbols as input and changes its state
accordingly. It consists of:
• 𝑄 Finite set of states

• Σ Alphabet: a finite set of input symbols
• 𝑄! An initial start state, 𝑄! ∈ 𝑄
• 𝑄" Set of final states, 𝑄" ⊆ 𝑄
• 𝜆 Transition function that describes how to move from one state to another.

Defined as: 𝑠 ∈ 𝑄 and 𝑎 ∈ Σ implies 𝜆 𝑠, 𝑎 = 𝑡 for some 𝑡 ∈ 𝑄

When a string is fed into the FA, it changes its state for each literal.
• If the input string is successfully processed and the FA reach its final

state, it is accepted (i.e., the input string is a valid token of the language)
• Languages recognized by FA are the languages described by REs.

Finite State Machines 3

FSM represented as a digraph
• Each node represents a state; edges represent transitions
• Transitions are labeled with a symbol from the alphabet Σ or the

empty string 𝜖
• Of all states 𝑄, there is a start state and at least one final

(accepting) state
• The language recognized by finite state machine M is denoted
𝐿 𝑀 = 𝑤 ∈ Σ∗ 𝑆,𝑤 →∗ 𝑌, 𝜖 }, where Y ∈ 𝐹

Finite State Machines 4

Example FSM

Finite State Machines

Start state

a

Can only transition from first to
next state through the edge if
next character read is a

Accepts the strings:
• ab
• aabb
• abbb
• ….

Final state

A string is accepted if it can be
read from the start state,
transition through states, and
end at a final state.

Otherwise, it is rejected.

How FSMs are drawn

a b

b

a

b a

q0

q1

q2 q3

q4

a,b

a,b

What language does this recognize?
a+b+

5

Represented as state-transition table

Input

State a b

0 2 1

1 ∅ ∅
2 2 3

3 4 3

4 ∅ ∅

Finite State Machines

a b

b

a

b a

q0

q1

q2 q3

q4

Σ = {𝑎, 𝑏}

State machine as digraph Can also be represented as a
state transition table

Note: Transitions not shown immediately go a null ‘reject’ state
(omitting them is less cluttered and easier to read)

6

Example with Σ = {𝑎, 𝑏, 𝑐}

Accepted or rejected?
• Input string: abca
• Input string: ccba
• Input string: abcac

Finite State Machines

a b c
q0 q1 q3q2

a
q4

Input

State a b c

0 1 ∅ ∅
1 ∅ 2 ∅
2 ∅ ∅ 3

3 4 ∅ ∅
4 ∅ ∅ ∅

7

Determinism
A finite automata is deterministic (DFA) or non-deterministic (NFA).

• It is deterministic if its behavior during recognition is fully
determined by the state it is in and the symbol to be consumed
• Given an input string, only one path may be taken through the FA

• It is non-deterministic if, given an input string, more than one path
may be taken.
• One type is 𝜖-transitions, which consume the empty string 𝜖 (no

symbols)

Theorem. Any DFA can be expressed as an NFA. Moreover, any NFA
can be expressed as a DFA!

Finite State Machines 9

Example NFA

Exercise: This NFA is equivalent to what regular expression?

Finite State Machines

q0 q1 q2 q3 q4

å = { a, b, c }

a b c a

e

e

c

State
Input

a b c e

0 1 Æ Æ Æ
1 Æ 2 Æ 2
2 Æ Æ 3,4 1
3 4 Æ Æ Æ
4 Æ Æ Æ Æ

10

PDef: Parenthesized Definitions

Finite State Machines 12

FSM for PDef

Finite State Machines 13

Theory to Practice
• Need to represent the states, represent transitions between

states, consume input, and restore input
• Create an enumerated type whose values represent the FSM

states: Start, Int, Float, Zero, Done, Error, …
• Keep track of the current state and update based on the state

transition

Finite State Machines

state = Start;
while (state != Done) {

ch = input.getSymbol();
switch (state) {

case Start: // select next state based on current input symbol
case S1: // select next state based on current input symbol
..
case Sn: // select next state based on current input symbol
case Done: // should never hit this case!

}
}

14

Finite State Machines

while (state != StateName.DONE_S) {
char ch = getChar();
switch (state) {

case START_S:
if (ch == ' ') {

state = StateName.START_S;
}
else if (ch == eofChar) {

type = Token.TokenType.EOF_T;
state = StateName.DONE_S;

}
else if (Character.isLetter(ch)) {

name += ch;
state = StateName.IDENT_S;

}
else if (Character.isDigit(ch)) {

name += ch;
if (ch == '0') state = StateName.ZERO_S;
else state = StateName.INT_S;

}
else if (ch == '.') {

name += ch;
state = StateName.ERROR_S;

}
else {

name += ch;
type = char2Token(ch);
state = StateName.DONE_S;

}
break;

15

FSM Practice
Join your team to work through the exercises

Each individual will submit docx file to Moodle

@mention me if questions on practice or environment setup

Finite State Machines 16

