Regular Expressions &
Finite State Machines

Main ideas

Regular expressions / grammars can be expressed with a finite state
machine (FSM)

* Also called finite automata (FA)
* Used to describe and recognize tokens
e Can be deterministic (DFA) or non-deterministic (NFA)

Two related challenges:
* Recognizing the longest substring corresponding to a token

* Separating a lexeme from the rest of the input string

Finite state machine (FSM)

Finite state machine (FSM), also called finite automata (FA), is a state
machine that takes a string of symbols as input and changes its state
accordingly. It consists of:

() Finite set of states

2 Alphabet: a finite set of input symbols
Qo Aninitial start state, Q¢ € Q
Qr Setof final states, Q@ € Q

A Transition function that describes how to move from one state to another.
Defined as: s € Q and a € X implies A(s,a) =t forsomet € Q

When a string is fed into the FA, it changes its state for each literal.

* |If the input string is successfully processed and the FA reach its final
state, it is accepted (i.e., the input string is a valid token of the language)

e Languages recognized by FA are the languages described by REs.

Finite State Machines

FSM represented as a digraph

* Each node represents a state; edges represent transitions

* Transitions are labeled with a symbol from the alphabet X or the
empty string €

e Of all states Q, there is a start state and at least one final
(accepting) state

* The language recognized by finite state machine M is denoted
LM)={weXZ|(S,w) »* (Y,e)},whereY € F

Example FSM

How FSMs are drawn

HC) Start state
020 NS

Can only transition from first to b a
next state through the edge if

next character read is a Q a,b

Accepts the strings:

@ Final state « ab

. . * aabb
A string is accepted if it can be
* abbb
read from the start state, .
transition through states, and
end at a final state.

What language does this recognize?
a+b+

Otherwise, it is rejected.

Finite State Machines 5

Represented as state-transition table

State machine as digraph Can also be represented as a
state transition table

Input

State |a |b

@ 0 2 |1
1 o0

b 2 2 (3

3 4 13

4 |0

Note: Transitions not shown immediately go a null ‘reject’ state
(omitting them is less cluttered and easier to read)

Example with X = {a, b, ¢}

0y —"—{at (a2 a3 (a8

Accepted or rejected?
* Input string: abca
* Input string: ccba

* Input string: abcac

Finite State Machines

Input
State [a|b|c
0 1(0|0
1 Q2|0
2 ®| 0|3
3 4100
4 Q0|0

Determinism

A finite automata is deterministic (DFA) or non-deterministic (NFA).

* |t is deterministic if its behavior during recognition is fully
determined by the state it is in and the symbol to be consumed

e Given an input string, only one path may be taken through the FA

* |t is non-deterministic if, given an input string, more than one path
may be taken.

* One type is e-transitions, which consume the empty string € (no
symbols)

Theorem. Any DFA can be expressed as an NFA. Moreover, any NFA
can be expressed as a DFA!

Finite State Machines

Example NFA

Input
State | a b C >
0 1 0| D | D
1 g | 2 | d| 2
2 | D 34| 1
3 4 | Q| O | O
4 0| D | D | D

Exercise: This NFA is equivalent to what regular expression?

Finite State Machines

10

PDef: Parenthesized Definitions

{ float a, a = 3, { int b, b =4, a = bxa }, a = a+4.0 }

Token Class Regular Expression Termination Characters
addT + any character
subT - "

mulT * "

divT / "

modT yA "
commaT , "
assignT = "

1pT ("

rpT) I

1cbT { "

rcbT } "
typeT int | float non-letter
intT 0|[1—9]0—9] non-digit
f1tT O0][1-9][0—-9]*).[0—9]" non-digit

identT la —2zA— Z]* non-letter

FSM for PDef

Finite State Machines 13

Theory to Practice

* Need to represent the states, represent transitions between
states, consume input, and restore input

* Create an enumerated type whose values represent the FSM
states: Start, Int, Float, Zero, Done, Error, ...

* Keep track of the current state and update based on the state
transition

state = Start;
while (state != Done) {
ch = input.getSymbol (),
switch (state) {
case Start: // select next state based on current input symbol
case Sl: // select next state based on current input symbol

case Sn: // select next state based on current input symbol
case Done: // should never hit this case!

while (state != StateName.DONE S) {
char ch = getChar();
switch (state) {
case START S:
if (ch == " ") {
state = StateName.START S;
}

else if (ch == eofChar) {
type = Token.TokenType.EOF T;
state = StateName.DONE S;

else if (Character.islLetter(ch)) {
name += ch;
state = StateName.IDENT S;

else if (Character.isDigit(ch)) {
name += ch;
if (ch == '0") state = StateName.ZERO S;

else state = StateName.INT S;

else 1if (ch == '.") {
name += ch;
state = StateName.ERROR S;

else {
name += ch;
type = char2Token(ch);
state = StateName.DONE S;
}

break;
! Finite State Machines

FSM Practice

Join your team to work through the exercises
Each individual will submit docx file to Moodle

@mention me if questions on practice or environment setup

